Meraj Mustafa Hashmi

Professor

School of Natural Sciences

Email: merajmustafa@sns.nust.edu.pk

Contact:

LinkedIn: https://pk.linkedin.com/in/meraj-mustafa-hashmi-76125127

About

Dr. Meraj Mustafa Hashmi is working as Professor in the School of Natural Sciences. Dr. Meraj Mustafa Hashmi has a PhD in Fluid Mechanics. Dr. Meraj Mustafa Hashmi has published 166 research articles & conference papers having a citation count of 7268, carried out 1 projects and filed 0 intellectual property.

Qualifications

PhD in Fluid Mechanics	2007 - 2011
Quaid-i-Azam University , Pakistan	
MSc in Mathematics	2005 - 2007
Quaid-i-Azam University , Pakistan	
BSc in Mathematics And Physics	2003 - 2005
University of the Punjab , Pakistan	
Experience	
Professor	2021- Present
School of Natural Sciences	
Associate Professor	2017 - 2021
School of Natural Sciences	
Assistant Professor	2015 - 2017
School of Natural Sciences	
Assistant Professor	2013 - 2015
School of Natural Sciences	
Assistant Professor	2012 - 2013
Research Centre for Modelling & Simulation	
Assistant Professor	2011 - 2012
Research Centre for Modelling & Simulation	
Lecturer	2010 - 2011
Research Centre for Modelling & Simulation	
Awards	

Best researcher award 2016

Best researcher of School of Natural Sciences (SNS) for the year 2016 $\,$

RPA-PCST(2014)

Recipient of the Research Productivity Award for the year 2014 under Category A.

RPA-PCST(2015)

Recipient of the Research Productivity Award for the year 2015 under Category A.

Research Projects

Physics of Fluids, Volume 36, Issue 10, Article Number 103631

National Projects	
Modeling and computational analysis of rotationally symmetric flows involving non-Newtonian fluids	2022
Funding Agency: HEC	
Amount: PKR 1,033,000.00 Status: Completed	
International Projects	
Research Articles	
Exploration of variable fluid properties in a pressure gradient driven generalized vortex flow dynamics	2025
using numerical approach	
Ariba Shakeel Meraj Mustafa Hashmi Kohilavani Naganthran Madara Physica Letters B. Volume: 20. Januar 27. Articla Number 2550126	
Modern Physics Letters B, Volume:39, Issue:27, Article Number 2550136	
Impact Factor: 2.200 Quartile: 1 DOI: 10.1142/S0217984925501362	
Dynamics of submicron deposition in Reiner-Rivlin fluid confined between spinning and stretching	2025
coaxial disks: A comparative approach	
Noor-E-Sakha . Meraj Mustafa Hashmi	
International Journal of Modern Physics B, Volume:39, Issue:23,	
Impact Factor: 2.800 Quartile: 1	
DOI: 10.1142/S021797922550211X	
Machine learning-inspired uncertainty analysis of unsteady flow along a deforming cylinder with	2025
variable physical properties	
Iqra Nasir Malik Meraj Mustafa Hashmi Tahir Mehmood PRAMANA-JOURNAL OF PHYSICS, Volume:99, Article Number:91, Pages:15	
Impact Factor: 2.1 Quartile: 2	
DOI: 10.1007/s12043-025-02931-6	
Assessing entropy production in a rotating flow of Jeffrey fluid subjected to frictional heating using	2025
two computational methods	
Meraj Mustafa Hashmi Khursheed Muhammad Iqra Nasir Malik Sana Fakhar Results in Engineering, Volume:26, Article Number 105242	
Impact Factor: 6.000 Quartile: 1	
DOI: https://doi.org/10.1016/j.rineng.2025.105242	
Examining heat transfer in an annular region bounded by an inner stretching and outer stationary	2025
cylinder considering variable properties	
Alhagie Cham Meraj Mustafa Hashmi Khursheed Muhammad	
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Pages 1-11	
Impact Factor: 1.800 Quartile: 3 DOI: 10.1177/09544062251324108	
Assessment of Bödewadt flow over a stretchable porous surface with variable physical properties: A	2025
comparative study	
Meraj Mustafa Hashmi Ariba Shakeel	
Numerical Heat Transfer, Part B: Fundamentals, Volume:86, Issue:1, Pages 29-42	
Impact Factor: 3.800 Quartile: 1 Citations: 2 DOI: 10.1080/10407790.2023.2274452	
Exploring entropy production in MHD Walters-B fluid motion in a rotating frame with frictional heating using OHAM based package BVPh 2.0	2024
Sana Fakhar Meraj Mustafa Hashmi Tayyaba Ibrahim	
International Journal of Hydrogen Energy, Volume 90, Pages 1252-1262	
Impact Factor: 8.100 Quartile: 1 Citations: 2	
DOI: 10.1016/j.ijhydene.2024.09.455	
Application of artificial neural networking to scrutinize the three-dimensional stagnation-point flow with	2024
variable physical properties	
Sana Saleem Rizwan UI Haq Meraj Mustafa Hashmi Feroz Ahmed Somroo	
Physics of Fluids, Volume 26, Issue 10, Article Number 102621	

DOI: https://doi.org/10.1063/5.0227095	
Exploring integrated heat and mass transfer in von-Kármán dynamics involving Reiner-Rivlin fluid with regression models	202
Saddam Sultan Akbar Meraj Mustafa Ammar Mushtaq	
Case Studies in Thermal Engineering, Volume 62, Article Number 105154	
Impact Factor: 6.400 Quartile: 1 Citations: 3	
DOI: https://doi.org/10.1016/j.csite.2024.105154	
Regression modeling of Bödewadt slip flow dynamics involving Reiner-Rivlin nanofluid based on a	202
modified Buongiorno approach Tayyaba Ibrahim Meraj Mustafa Junaid Ahmad Khan Ammar Mushtaq	
Physica scripta , Volume 99, Number 10, Article Number 105042	
Impact Factor: 2.600 Quartile: 2	
DOI: 10.1088/1402-4896/ad78c1	
Examining stagnation-point flow impinging on a deforming cylinder in Reiner-Rivlin fluid with	202
integrated heat and mass transfer	
Alhagie Cham Meraj Mustafa Hashmi	
Case Studies in Thermal Engineering, Volume 60, Article Number 104598	
Impact Factor: 6.400 Quartile: 1 Citations: 3 DOI: 10.1016/j.csite.2024.104598	
Boundary layer formations over a stretchable heated cylinder in a viscoelastic fluid with partial slip and	202
viscous dissipation effects	202
Alhagie Cham Meraj Mustafa Hashmi	
Numerical Heat Transfer, Part A: Applications, Volume 85, Issue 11, Pages 1767-1779	
Impact Factor: 2.000 Quartile: 3 Citations: 11 DOI: 10.1080/10407782.2023.2210259	
A novel model for viscoelastic fluid flow and heat near a stretchable plate using variable fluid	202
properties: A computational study	
Laiba Gull Meraj Mustafa Hashmi Rizwan Ul Haq	
Numerical Heat Transfer, Part B: Fundamentals, Volume 85, Issue 6, Pages 649-661	
Impact Factor: 1.000 Quartile: 4 Citations: 6 DOI: 10.1080/10407790.2023.2252601	
Modeling slip flow of Bingham fluid induced by a porous revolving disk with viscous dissipation and Joule heating effects	202
Haleema Sadia Meraj Mustafa Hashmi Tahir Mehmood	
Journal of Thermal Analysis and Calarometry, Volume 149, Issue 11, Pages 5555-5567	
Impact Factor: 3.0 Quartile: 2 Citations: 3	
DOI: https://doi.org/10.1007/s10973-024-13260-y	
Exploring slip flow of viscoelastic fluid with frictional heating effects: Uncertainty analysis using response surface methodology (RSM)	202
Laiba Gull Ammar Mushtaq Tahir Mehmood Meraj Mustafa	
International Communications in Heat and Mass Transfer, Volume:155, Article Number: 107548	
Impact Factor: 7.0 Quartile: 1 Citations: 8	
DOI: 10.1016/j.icheatmasstransfer.2024.107548	
Coupled heat and mass transfer to viscoelastic fluid flow in a rotating frame using series and numerical solutions	202
Saddam Sultan Akbar Meraj Mustafa Hashmi	
International Journal of Heat and Fluid Flow, Volume 106, Article Numebr: 109294	
Impact Factor: 2.6 Quartile: 2 Citations: 9	
DOI: 10.1016/j.ijheatfluidflow.2024.109294	
Numerical investigation of Reiner–Rivlin fluid flow and heat transfer over a shrinking rotating disk	202
Suguneswaran Puspanathan Kohilavani Naganthran Meraj Mustafa Hashmi Ishak Hashim Shaher Momani	
Chinese Journal of Physics, Volume 88, Pages 198-211	
Impact Factor: 5.000 Quartile: 1 Citations: 9	
DOI: 10.1016/j.cjph.2024.01.021	

Impact Factor: 4.100 | Quartile: 1 | Citations: 1

Exploring the Dynamics of Second-Grade Fluid Motion and Heat Over a Deforming Cylinder or Plate Affected by Partial Slip Conditions	2024
Alhagie Cham Meraj Mustafa Hashmi	
Arabian Journal for Science and Engineering, Volume:49, Issue:2, Page:1505-1514	
Impact Factor: 2.9 Quartile: 2 Citations: 12	
DOI : 10.1007/s13369-023-07893-8	
Analytical solution for unsteady Walters-B fluid flow by a deforming surface with acceleration using	2024
OHAM based package BVPh2.0	
Iqra Nasir Malik Meraj Mustafa Hashmi	
Physica Scripta, Volume 99, Number 1, Article Number: 015001, Pages: 12	
Impact Factor: 2.9 Quartile: 2 Citations: 1	
DOI: 10.1088/1402-4896/ad0f84	
Unsteady flow over a rotating and vertically moving disk with variable fluid properties	2023
Saddam Sultan Akbar Meraj Mustafa Hashmi	
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Volume 237, Issue 5, Pages 1679-1687	
Impact Factor: 2.4 Quartile: 3	
DOI : 10.1177/095440892211244	
Numerical exploration of slip effects on second-grade fluid motion over a porous revolving disk with	2023
heat and mass transfer	
Haleema Sadia Meraj Mustafa Hashmi	
Heliyon , Volume:9, Issue:8, Article Number:e18683	
Impact Factor: 4.0 Quartile: 2 Citations: 14	
DOI: 10.1016/j.heliyon.2023.e18683	
Numerical and series solutions for Von-Kármán flow of viscoelastic fluid inspired by viscous	2023
dissipation and Joule heating effects	
Haleema Sadia Meraj Mustafa Hashmi Muhammad Asif Farooq	
Alexandria Engineering Journal, Volume 75, Pages 181-190	
Impact Factor: 6.626 Quartile: 1 Citations: 14	
DOI: 10.1016/j.aej.2023.05.075	
Numerical exploration of buoyancy inspired flow of pseudoplastic fluid along a vertical cylinder with	2023
viscous dissipation effects	
Iram Showkat Ammar Mushtaq Meraj Mustafa	
Alexandria Engineering Journal, Volume 74, Pages 415-425	
Impact Factor: 6.626 Quartile: 1 Citations: 10	
DOI: https://doi.org/10.1016/j.aej.2023.05.039	
Application of Exponential Temperature Dependent Viscosity Model for Fluid Flow over a Moving or	2022
Stationary Slender Surface	
Saddam Sultan Akbar Meraj Mustafa Hashmi	
Mathematics , Volume 10, Issue 18, Article Number 3269	
Impact Factor: 2.4 Quartile: 1 Citations: 6	
DOI: 10.3390/math10183269	
A numerical study of rotationally symmetric nanofluid flow over a permeable surface using Buongiorno	2022
model	
Sahreen Tahira Ammar Mushtaq Meraj Mustafa	
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Volume 236, Issue 4, Pages 1652-1660	
Impact Factor: 1.822 Quartile: 3 Citations: 2	
DOI: https://doi.org/10.1177/09544089211073251	
A comparative study of different viscosity models for unsteady flow over a decelerating rotating disk	2022
with variable physical properties	
Iqra Ejaz Meraj Mustafa Hashmi	
International Communications in Heat and Mass Transfer, Volume 135, Article Number 106155	
Impact Factor: 6.782 Quartile: 1 Citations: 17	
DOI: 10.1016/j.icheatmasstransfer.2022.106155	
Rotationally symmetric flow of Cu-Al2O3/water hybrid nanofluid over a heated porous boundary	2022
Ammar Mushtaq Meraj Mustafa Hashmi Sahreen Tahira	
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Volume 236, issue 3, Pages 1524-1534	

DOI: https://doi.org/10.1177/09544062211023104	
A novel formulation and analysis for heat transfer in von Kármán flow involving viscoelastic fluid: OHAM solutions Muhammad Burhan Jafeer Meraj Mustafa Hashmi	202
Journal of Thermal Analysis and Calorimetry, Volume 147, Pages 477-488	
Impact Factor: 4.4 Quartile: 1 Citations: 8 DOI: 10.1007/s10973-020-10244-6	
Falkner-Skan flow of nanofluid past a static wedge with partial slip conditions using different models Ammara Bhatti Meraj Mustafa Hashmi Talat Rafiq International Communications in Heat and Mass Transfer, Volume 129, Article Number 105690	202
Impact Factor: 5.683 Quartile: 1 Citations: 7	
DOI: 10.1016/j.icheatmasstransfer.2021.105690	
Bödewadt flow of Bingham fluid over a permeable disk with variable fluid properties: A numerical study	202
Meraj Mustafa Hashmi Talat Rafiq Sadia Hina	
International Communications in Heat and Mass Transfer, Volume 127, Article Number 105540	
Impact Factor: 5.683 Quartile: 1 Citations: 10 DOI: 10.1016/j.icheatmasstransfer.2021.105540	
Rotationally symmetric flow of Reiner-Rivlin fluid over a heated porous wall using numerical approach	202
Junaid Ahmad Khan Talat Rafiq Meraj Mustafa Hashmi	
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Pages 1-12	
Impact Factor: 1.758 Quartile: 3 Citations: 12 DOI: https://doi.org/10.1177/09544062211034204	
Steadily revolving flow of Sisko fluid along a stretchable boundary with non-linear radiation effects	202
Talat Rafiq Meraj Mustafa Hashmi	
Pramana-Journal of Physics, Volume 95, Article Number: 120	
Impact Factor: 2.219 Quartile: 2 Citations: 6 DOI: https://doi.org/10.1007/s12043-021-02149-2	
Bodewadt flow of Bingham fluids over a non-isothermal permeable disk with viscous dissipation effects	202
Talat Rafiq Meraj Mustafa Hashmi	
Alexandria Engineering Journal , Volume 60, Issue 3, Pages 2857-2864	
Impact Factor: 6.626 Quartile: 1 Citations: 13	
DOI: 10.1016/j.aej.2021.01.020	
A study of heat transfer and entropy generation in von Kármán flow of Reiner-Rivlin fluid due to a stretchable disk	202
Muhammad Usman Rashid Meraj Mustafa Hashmi	
Ain Shams Engineering Journal, Volume 12, Issue 1, Pages 875-883	
Impact Factor: 4.790 Quartile: 1 Citations: 40 DOI: https://doi.org/10.1016/j.asej.2020.06.017	
A study of elastico-viscous fluid flow by a revolving disk with heat dissipation effects using HAM based package BVPh 2.0	202
. Muhammad Burhan Jafeer Meraj Mustafa Hashmi	
Scientific Reports, Volume 11, Article Number 4514	
Impact Factor: 4.997 Quartile: 2 Citations: 16	
DOI: https://doi.org/10.1038/s41598-021-83864-z	
Analytical solutions for fluid flow triggered by a melting cylindrical surface in upper-convected Maxwell (UCM) fluid	202
Rai Sajjad Saif Meraj Mustafa Muhammad F. Afzaal Hamid Assilzadeh	
International Communications in Heat and Mass Transfer, Volume 121, Article Number 105059	
Impact Factor: 6.782 Quartile: 1 Citations: 14	
DOI: https://doi.org/10.1016/j.icheatmasstransfer.2020.105059	
Second law analysis of heat transfer in swirling flow of Bingham fluid by a rotating disk subjected to suction effect	202

Impact Factor: $1.762 \mid$ Quartile: $3 \mid$ Citations: 6

Maria Tabassum Mahmood Rahi Meraj Mustafa Hashmi

Thermal Science, Volume 25, Issue 1, Part A, Pages 13-24 Impact Factor: 1.971 Quartile: 3 Citations: 16	
DOI: https://doi.org/10.2298/TSCI180722162M	
A Novel Formulation for MHD Slip Flow of Elastico-Viscous Fluid Induced by Peristaltic Waves with Heat/Mass Transfer Effects	2020
Javeriah Rani S. Hina Meraj Mustafa Hashmi Arabian Journal for Science and Engineering, Volume 45, Pages 9213–9225	
Impact Factor: 2.334 Quartile: 3 Citations: 17	
DOI: https://doi.org/10.1007/s13369-020-04722-0	
Dual solutions for fluid flow over a stretching/shrinking rotating disk subject to variable fluid properties	2020
Ammar Mushtaq Roslinda Nazar Kohilavani Naganthran Meraj Mustafa Hashmi Physica A: Statistical Mechanics and its Applications, Volume 556, Article Number 124773	
Impact Factor: 3.263 Quartile: 2 Citations: 38	
DOI: https://doi.org/10.1016/j.physa.2020.124773	
A New Model and Analysis for Peristalsis of Carreau–Yasuda (CY) Nanofuid Subject to Wall Properties Sana Maryam Kayani Sadia Hina Meraj Mustafa Hashmi	2020
Arabian Journal for Science and Engineering, Volume 45, Pages 5179-5190	
Impact Factor: 2.334 Quartile: 3 Citations: 38 DOI: https://doi.org/10.1007/s13369-020-04359-z	
Modeling Heat Transfer in Fluid Flow Near a Decelerating Rotating Disk with Variable Fluid Properties	2020
Talat Rafiq Muhammad Asif Farooq Talat Rafiq Meraj Mustafa Hashmi	
International Communications in Heat and Mass Trasnfer, Volume 116, Article Number 104673 Impact Factor: 5.683 Quartile: 1 Citations: 40	
DOI: https://doi.org/10.1016/j.icheatmasstransfer.2020.104673	
Numerical simulations of heat transfer around a circular cylinder immersed in a shear-thinning fluid	2020
obeying Cross model Sadia Hina Ayesha Shafique Meraj Mustafa Hashmi	
Physica A: Statistical Mechanics and its Applications, Volume 540, Article Number 123184	
Impact Factor: 3.263 Quartile: 2 DOI: https://www.sciencedirect.com/science/article/pii/S0378437119317911?via%3Dihub	
Computational Analysis of Unsteady Swirling Flow Around a Decelerating Rotating Porous Disk in	2020
Nanofuid Talat Paria Marai Mustafa Hashmi	
Talat Rafiq Meraj Mustafa Hashmi Arabian Journal for Science and Engineering, Volume 45, Pages 1143-1154	
Impact Factor: 2.334 Quartile: 3	
DOI: 10.1007/s13369-019-04257-z.	
Bodewadt Flow Over a Permeable Disk with Homogeneous-Heterogeneous Reactions: A Numerical Study	2019
Talat Rafiq Meraj Mustafa Hashmi	
Applied Sciences-Basel , Volume 9, Issue 19, Article Number:4046	
Impact Factor: 2.474 Quartile: 2 Citations: 15 DOI: 10.3390/app9194046	
Numerical study of Bödewadt slip flow on a convectively heated porous disk in a nanofluid	2019
Talat Rafiq Meraj Mustafa Hashmi Junaid Ahmad Khan	
Physica Scripta, Volume 94, Issue 9, Article Number: 095701 Impact Factor: 1.985 Quartile: 2 Citations: 14	
DOI: https://doi.org/10.1088/1402-4896/ab1549	
A Novel Approach to Develop a Closed-Form Solution for MHD Flow Induced by a Rotating Disk	2019
Zeshan Zulifqar Azad Akhter Siddiqui Meraj Mustafa Hashmi	
IEEE Access , Volume 7, page 124410	
Impact Factor: 3.745 Quartile: 1 Citations: 3 DOI: 10.1109/ACCESS.2019.2938314	
Numerical assessment of Rödewadt flow and heat transfer over a permeable disk with variable fluid	2019

properties

Meraj Mustafa Hashmi Muhammad Asif Farooq Talat Rafiq	
Physica A: Statistical Mechanics and its Applications, Volume 534, Article 122138	
Impact Factor: 2.924 Quartile: 2 Citations: 28	
DOI: https://doi.org/10.1016/j.physa.2019.122138	
Pressure-Driven Flow of Cross Fluid Along a Stationary Plate Subject to Binary Chemical Reaction and	2019
Arrhenius Activation Energy	
Meraj Mustafa Hashmi Aiman Sultan Mahmood Rahi	
Arabian Journal for Science and Engineering, Volume 44, Issue 6, Pages 5647-5655	
Impact Factor: 1.711 Quartile: 3 Citations: 18	
DOI: 10.1007/s13369-018-3678-0	
Assisting or opposing MHD flow of cross fluid along a non-isothermal surface with variable thermal	2019
conductivity	
Meraj Mustafa Hashmi Aiman Sultan Mahmood Rahi	
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF ME, Vol 233, Issue 14	
Impact Factor: 1.386 Quartile: 3 Citations: 6 DOI: 10.1177/0954406219842600	
Entropy generation analysis for radiative heat transfer to B?dewadt slip flow subject to strong wall	2018
suction Meraj Mustafa Hashmi Ioan Pop Kohilavani Naganthran Roslinda Nazar	
European Journal of Mechanics-B Fluids, NULL	
Impact Factor: 1.811 Quartile: 3	
DOI: https://www.sciencedirect.com/science/article/pii/S0997754618301316	
Analytical and numerical approaches for Falkner?Skan flow of MHD Maxwell fluid using a non-Fourier	2018
heat flux model	2010
Saeid Abbasbandy Meraj Mustafa Hashmi	
International Journal of Numerical Methods for Heat & Fluid Flow, NULL	
Impact Factor: 1.958 Quartile: 2 Citations: 6	
DOI: https://www.emeraldinsight.com/doi/abs/10.1108/HFF-08-2017-0316	
Modeling MHD swirling flow due to rough rotating disk with non-linear radiation and chemically	2018
reactive solute	
Meraj Mustafa Hashmi Ammar Mushtaq Tasawar Hayat Ahmed Alsaedi	
International Journal of Numerical Methods for Heat & Fluid Flow, NULL	
Impact Factor: 1.958 Quartile: 2 Citations: 4	
DOI: https://www.emeraldinsight.com/doi/abs/10.1108/HFF-10-2017-0403	
Non-aligned MHD stagnation-point flow of upper-convected Maxwell fluid with nonlinear thermal	2018
radiation	
Meraj Mustafa Ammar Mushtaq Tasawar Hayat Ahmed Alsaedi	
Neural Computing and Applications, NEURAL COMPUTING & APPLICATIONS Volume: 30 Issue: 5 Pages: 1549-1555	
Impact Factor: 4.664 Quartile: 1 Citations: 7	
DOI: 10.1007/s00521-016-2761-2	
A revised model to study the MHD nanofluid flow and heat transfer due to rotating disk: numerical	2018
solutions	
Junaid Ahmad Khan Tasawar Hayat Ahmed Alsaedi Meraj Mustafa Hashmi	
Neural Computing and Applications, NULL Impact Factor: 4.664 Quartile: 1 Citations: 30	
DOI: https://link.springer.com/article/10.1007/s00521-016-2743-4	
A numerical treatment for partial slip flow and heat transfer of non-Newtonian Reiner-Rivlin fluid due to rotating disk	2018
M. Mustafa Maria Tabassum	
International Journal of Heat and Mass Transfer, NULL	
Impact Factor: 4.346 Quartile: 1	
DOI: https://www.sciencedirect.com/science/article/pii/S0017931017348123	
Puovanay offects in stagnation point flow of Maywell fluid utilizing non Equalay heat flow annuals	2018
Buoyancy effects in stagnation-point flow of Maxwell fluid utilizing non-Fourier heat flux approach Ammar Mushtaq Ahmed Alsaedi Meraj Mustafa Tasawar Hayat	2018
PLOS ONE Volume 13 Issue 7 Article Number e0200325	

Impact Factor: $2.776 \mid$ Quartile: $2 \mid$ Citations: 14

Consequences of convection-radiation interaction for magnetite-water nanofluid flow due to a moving plate Ammar Mushtaq Junaid Ahmad Khan Meraj Mustafa Hashmi Tasawar Hayat Ahmad Alsaedi Thermal Science, Volume 22(1B), Pages 443-451 Impact Factor: 1.541 Quartile: 3 Citations: 3	2018
DOI: 10.2298/TSCI151128212M Influence of Non-linear Radiation Heat Flux on Rotating Maxwell Fluid over a Deformable Surface: A	2018
Numerical Study Ammar Mushtaq Ahmed Alsaedi Tasawar Hayat Meraj Mustafa Hashmi Communications in Theoretical Physics, NULL Impact Factor: 1.416 Quartile: 3 Citations: 1 DOI: 10.1088/0253-6102/69/4/461	
Heat transfer in Oldroyd-B fluid flow due to an exponentially stretching wall utilizing Cattaneo?Christov heat flux model Meraj Mustafa Hashmi T. Hayat A. Alsaedi Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol.40:191, April 2018 Impact Factor: 1.743 Quartile: 3 Citations: 6 DOI: 10.1007/s40430-018-1132-6	2018
A numerical analysis for non-linear radiation in MHD flow around a cylindrical surface with chemically reactive species Junaid Ahmad Khan Meraj Mustafa Hashmi Results in Physics, Volume 8, Pages 963-970 Impact Factor: 3.042 Quartile: 1 Citations: 26 DOI: 10.1016/j.rinp.2017.12.067	2018
Numerical Solutions for Radiative Heat Transfer in Ferrofluid Flow due to a Rotating Disk: Tiwari and Das Model Meraj Mustafa Junaid Ahmad Khan T. Hayat A. Alsaedi International Journal of Nonlinear Sciences and Numerical Simulation, NULL Impact Factor: 1.033 Quartile: 3 Citations: 12 DOI: 10.1515/ijnsns-2015-0196	2018
Rotating flow of viscoelastic fluid with nonlinear thermal radiation: a numerical study Meraj Mustafa Hashmi Tasawar Hayat Ahmed Alsaedi Rida Ahmad Neural Computing and Applications, NULL Impact Factor: 4.664 Quartile: 1 Citations: 29 DOI: https://link.springer.com/article/10.1007/s00521-016-2462-x	2018
An analytical treatment for MHD mixed convection boundary layer flow of Oldroyd-B fluid utilizing non-Fourier heat flux model Meraj Mustafa International Journal of Heat and Mass Transfer, Volume 113, Pages 1012-1020 Impact Factor: 3.891 Quartile: 1 Citations: 29 DOI: 10.1016/j.ijheatmasstransfer.2017.06.002	2017
A non-Fourier heat flux approach to model MHD Oldroyd-B fluid flow due to bidirectional stretching surface S. Hina Maimoona Munir Meraj Mustafa Hashmi International Journal of Mechanical Sciences, Volumes 131-132, Pages 146-154 Impact Factor: 3.570 Quartile: 2 Citations: 25 DOI: 10.1016/j.ijmecsci.2017.06.051	2017
Rotating flow of Oldroyd-B fluid over stretchable surface with Cattaneo - Christov heat flux Analytic solutions Meraj Mustafa Hashmi T. Hayat A. Alsaedi International Journal of Numerical Methods for Heat & Fluid Flow, Volume:27, Issue: 10, Pages: 2207-2222 Impact Factor: 2.45 Quartile: 1 Citations: 16 DOI: DOI:10.1108/HFF-08-2016-0323	2017

Numerical tackling for viscoelastic fluid flow in rotating frame considering homogeneous- heterogeneous reactions Najwa Maqsood Meraj Mustafa Hashmi Junaid Ahmad Khan Results in Physics, NULL	2017
Impact Factor: 2.147 Quartile: 2 Citations: 16 DOI: 10.1016/j.rinp.2017.09.011	
Computations for nanofluid flow near a stretchable rotating disk with axial magnetic field and convective conditions Ammar Mushtaq Meraj Mustafa Results in Physics, Volume 7, Pages 3137-3144 Impact Factor: 2.147 Quartile: 2 Citations: 38	2017
Buoyancy effects on nanofluid flow past a convectively heated vertical Riga-plate: A numerical study Rida Ahmad Meraj Mustafa Hashmi M. Turkyilmazoglu International Journal of Heat and Mass Transfer, Volume 111, Pages 827-835 Impact Factor: 3.891 Quartile: 1 Citations: 148 DOI: 10.1016/j.ijheatmasstransfer.2017.04.046	2017
Buongiorno's model for fluid flow around a moving thin needle in a flowing nanofluid: A numerical study Meraj Mustafa Hashmi Rida Ahmad S. Hina Chinese Journal of Physics, Volume: 55 Issue: 4 Pages: 1264-1274 Impact Factor: 1.051 Quartile: 3 Citations: 82 DOI: 10.1016/j.cjph.2017.07.004	2017
Peristaltic transport of Bingham plastic fluid considering magnetic field, Soret and Dufour effects Meraj Mustafa Hashmi Tasawar Hayat B. Ahmad S. Farooq Results in Physics, RESULTS IN PHYSICS, Volume: 7, Pages: 2000-2011, 2017 Impact Factor: 2.147 Quartile: 2 Citations: 29 DOI: 10.1016/j.rinp.2017.06.009	2017
MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model Meraj Mustafa Hashmi International Journal of Heat and Mass Transfer, International Journal of Heat and Mass Transfer, Volume 108, Pages 1910-1916, 1 May 2017 Impact Factor: 3.891 Quartile: 1 Citations: 195 DOI: 10.1016/j.ijheatmasstransfer.2017.01.064	2017
Numerical study of partial slip effects on MHD flow of nanofluids near a convectively heated stretchable rotating disk Meraj Mustafa Junaid Ahmad Khan Journal of Molecular Liquids, Volume 234, Pages 287-295 Impact Factor: 4.513 Quartile: 1 Citations: 38 DOI: 10.1016/j.molliq.2017.03.087	2017
Numerical study for Bodewadt flow of water based nanofluid over a deformable disk: Buongiorno model Meraj Mustafa Hashmi Junaid Ahmad Khan T. Hayat F Alzahrani Indian Journal of Physics, Volume 91, Issue 5, Pages: 527-533 Impact Factor: 0.967 Quartile: 3 Citations: 19 DOI: 10.1007/s12648-017-0959-5	2017
Three-dimensional flow of Jeffrey fluid with Cattaneo-Christov heat flux: An application to non-Fourier heat flux theory Meraj Mustafa Hashmi Tasawar Hayat Taseer Muhammad Ahmed Alsaedi Chinese Journal of Physics, Volume: 55 Issue: 3 Pages: 1067-1077 Impact Factor: 1.051 Quartile: 3 Citations: 20 DOI: 10.1016/j.cjph.2017.03.014	2017
Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy Meraj Mustafa Hashmi Junaid Ahmad Khan Tasawar Hayat Ahmed Alsaedi International Journal of Heat and Mass Transfer, Volume 108, Pages 1340-1346, Part: B Impact Factor: 3.891 Quartile: 1 Citations: 233	2017

Meraj Mustafa Hashmi S. Hina Tasawar Hayat Ahmed Alsaedi

International Journal of Heat and Mass Transfer, Volume 101, Pages 156-165

Slip effects on MHD boundary layer flow of Oldroyd-B fluid past a stretching sheet: An analytic solution 2017 Meraj Mustafa Hashmi S. Abbasbandy T. Hayat A. Alsaedi Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume: 39 Issue: 9 Pages: 3389-3397 Impact Factor: 1.627 | Quartile: 3 | Citations: 14 DOI: 10.1007/s40430-017-0744-6 Rotating flow of Maxwell fluid with variable thermal conductivity: An application to non-Fourier heat 2017 flux theory Meraj Mustafa Hashmi Ahmed Alsaedi T. Hayat International Journal of Heat and Mass Transfer, Volume 106, Pages 142-148 Impact Factor: 3.891 | Quartile: 1 | Citations: 63 DOI: 10.1016/j.ijheatmasstransfer.2016.10.051 2017 Numerical Analysis of Sakiadis Flow Problem Considering Maxwell Nanofluid Meraj Mustafa Hashmi Junaid Ahmad Khan Thermal Science, Volume 21(6 Part B), Pages 2747-2756 Impact Factor: 1.433 | Quartile: 3 | Citations: 1 DOI: https://doi.org/10.2298/TSCI150306001M An optimal study for three-dimensional flow of Maxwell nanofluid subject to rotating frame 2017 Meraj Mustafa Hashmi T. Hayat Taseer Muhammad A. Alsaedi Journal of Molecular Liquids, Volume: 229 Pages: 541-547 Published: MAR 2017 Impact Factor: 4.513 | Quartile: 1 | Citations: 52 DOI: 10.1016/j.molliq.2017.01.005 A revised model to study the rotating flow of nanofluid over an exponentially deforming sheet: 2017 **Numerical solutions** Meraj Mustafa Hashmi Muhammad Wasim Ahmed Alsaedi T. Hayat Journal of Molecular Liquids, Journal of Molecular Liquids, Volume 225, Pages 320-327, January 2017 Impact Factor: 4.513 | Quartile: 1 | Citations: 19 DOI: 10.1016/j.molliq.2016.11.078 2017 Nanofluid flow through a porous space with convective conditions and heterogeneous-homogeneous reactions Meraj Mustafa Hashmi T. Hayat Zakir Hussain Ahmed Alsaedi Journal of the Taiwan Institute of Chemical Engineers, Volume: 70 Pages: 119-126 Impact Factor: 3.849 | Quartile: 1 | Citations: 48 DOI: 10.1016/j.jtice.2016.11.002 Numerical Study of MHD Viscoelastic Fluid Flow with Binary Chemical Reaction and Arrhenius 2017 **Activation Energy** Meraj Mustafa Ammar Mushtaq Tasawar Hayat A. Alsaedi International Journal of Chemical Reactor Engineering, Volume 15, Issue 1, Pages 127-135 Impact Factor: 0.881 | Quartile: 4 | Citations: 45 DOI: 10.1515/ijcre-2016-0131 Peristaltic flow of Sutterby fluid in a vertical channel with radiative heat transfer and compliant walls: A 2016 numerical study Meraj Mustafa Hashmi Tasawar Hayat Hina Zahir Ahmed Alsaedi Results in Physics, Results in Physics Volume: 6, Pages: 805-810, 2016 Impact Factor: 0.946 | Quartile: 3 | Citations: 67 DOI: 10.1016/j.rinp.2016.10.015 Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: A useful application in 2016 biomedicine Meraj Mustafa S. Hina Tasawar Hayat Ahmed Alsaedi Computer Methods and Programs in Biomedicine, COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE Volume: 135 Pages: 89-100 Oct 2016 Impact Factor: 2.503 | Quartile: 1 | Citations: 45 DOI: 10.1016/j.cmpb.2016.07.019 Peristaltic transport of Powell-Eyring fluid in a curved channel with heat/mass transfer and wall 2016 properties

Impact Factor: 3.458 Quartile: 1 Citations: 62 DOI: 10.1016/j.ijheatmasstransfer.2016.05.034	
A model for an application to biomedical engineering through nanoparticles Meraj Mustafa Hashmi Tasawar Hayat Sadaf Nawaz F. Alsaadi M. Rafiq International Journal of Heat and Mass Transfer, Volume 101, Pages 112-120 Impact Factor: 3.458 Quartile: 1 Citations: 21 DOI: 10.1016/j.ijheatmasstransfer.2016.05.033	2016
Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation	2016
energy Z Shafique Meraj Mustafa Ammar Mushtaq Results in Physics, Volume 6, Pages 627-633 Impact Factor: 0.946 Quartile: 3 Citations: 240 DOI: 10.1016/j.rinp.2016.09.006	
Numerical study for rotating flow of nanofluids caused by an exponentially stretching sheet Ammar Mushtaq Meraj Mustafa Tasawar Hayat A. Alsaedi Advanced Powder Technology, Volume 27, Issue 5, Pages 2223-2231 Impact Factor: 2.659 Quartile: 2 Citations: 43	2016
DOI: 10.1016/j.apt.2016.08.007	
Model and comparative study for rotating flow of nanofluids due to convectively heated exponentially stretching sheet Meraj Mustafa Hashmi R. Ahmad Journal of Molecular Liquids, JOURNAL OF MOLECULAR LIQUIDS Volume: 220 Pages: 635-641, August 2016 Impact Factor: 3.648 Quartile: 1 Citations: 59 DOI: 10.1016/j.molliq.2016.04.125	2016
On magnetohydrodynamic flow of second grade nanofluid over a convectively heated nonlinear stretching surface Meraj Mustafa Hashmi Tasawar Hayat Arsalan Aziz Taseer Muhammad Ahmed Alsaedi Advanced Powder Technology, ADVANCED POWDER TECHNOLOGY Volume: 27 Issue: 5 Pages: 1992-2004 Sept 2016 Impact Factor: 2.659 Quartile: 2 Citations: 45 DOI: 10.1016/j.apt.2016.07.002	2016
Boundary layer flow over a moving plate in a flowing fluid considering non-linear radiations Ammar Mushtaq Meraj Mustafa Tasawar Hayat A. Alsaedi International Journal of Numerical Methods for Heat & Fluid Flow, Volume 26, Issue 5, Pages 1617-1630 Impact Factor: 1.713 Quartile: 2 Citations: 12 DOI: 10.1108/HFF-12-2014-0365	2016
Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet Meraj Mustafa Hashmi Rida Ahmad Tasawar Hayat Ahmed Alsaedi Journal of Magnetism and Magnetic Materials, Volume 407, Pages 69-74 Impact Factor: 2.63 Quartile: 2 Citations: 76 DOI: 10.1016/j.jmmm.2016.01.038	2016
A Comparative Study for Flow of Viscoelastic Fluids with Cattaneo-Christov Heat Flux Meraj Mustafa Hashmi Tasawar Hayat Taseer Muhammad Ahmed Alsaedi PLoS ONE, Volume 11, Issue 5, Article Number: e0155185 Impact Factor: 2.806 Quartile: 1 Citations: 57 DOI: 10.1371/journal.pone.0155185	2016
Effects of the Cattaneo-Christov heat flux model on peristalsis Meraj Mustafa Hashmi A. Tanveer B. Ahmad S. Hina T. Hayat Engineering Applications of Computational Fluid Mechanics, Volume 10, Issue 1, Pages 375-385 Impact Factor: 1.167 Quartile: 2 Citations: 26 DOI: 10.1080/19942060.2016.1174889	2016
Viscoelastic flow and heat transfer over a non-linearly stretching sheet: OHAM solution Meraj Mustafa Journal of Applied Fluid Mechanics, JOURNAL OF APPLIED FLUID MECHANICS Volume: 9 Issue: 3 Pages: 1321-1328 Part: 2, May 2016	2016

Impact Factor: N/A | Citations: 18

Impact Factor: 0.724 | Quartile: 3 | Citations: 10

Velocity and thermal slip effects on peristaltic motion of Walters-B fluid Meraj Mustafa Hashmi Maryiam Javed Tasawar Hayat Bashir Ahmad International Journal of Heat and Mass Transfer, Volume 96, Pages 210-217 Impact Factor: 3.458 Quartile: 1 Citations: 48 DOI: 10.1016/j.ijheatmasstransfer.2015.12.029	2016
Cattaneo-Christov Heat Flux Model for MHD Three-Dimensional Flow of Maxwell Fluid over a Stretching Sheet Meraj Mustafa Hashmi Khansa Rubab PLoS ONE, Volume 11, Issue 4, Article Number: e0153481 Impact Factor: 2.806 Quartile: 1 Citations: 44 DOI: 10.1371/journal.pone.0153481	2016
On three-dimensional flow of nanofluids past a convectively heated deformable surface: A numerical study Junaid Ahmad Khan Meraj Mustafa Ammar Mushtaq International Journal of Heat and Mass Transfer, Volume 94, Pages 49-55 Impact Factor: 3.458 Quartile: 1 Citations: 17 DOI: 10.1016/j.ijheatmasstransfer.2015.11.036	2016
A numerical study for three-dimensional viscoelastic flow inspired by non-linear radiative heat flux Meraj Mustafa Hashmi Ammar Mushtaq Tasawar Hayat Ahmed Alsaedi International Journal of Non-Linear Mechanics, Volume 79, Pages: 83-87 Impact Factor: 2.074 Quartile: 2 Citations: 25 DOI: 10.1016/j.ijnonlinmec.2015.11.006	2016
Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by NonLinear Thermal Radiation Meraj Mustafa Hashmi Ammar Mushtaq Tasawar Hayat A. Alsaedi PLoS ONE, Volume 11, Issue 2, Article Number e0149304 Impact Factor: 2.806 Quartile: 1 Citations: 96 DOI: 10.1371/journal.pone.0149304	2016
Numerical solution for Sakiadis flow of upper-convected Maxwell fluid using Cattaneo-Christov heat flux model Ammar Mushtaq S. Abbasbandy Meraj Mustafa Tasawar Hayat A. Alsaedi AIP Advances, Volume 6, Issue 1, Article Number 015208 Impact Factor: 1.568 Quartile: 3 Citations: 44 DOI: 10.1063/1.4940133	2016
Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid Meraj Mustafa Hashmi F M Abbasi S A Shehzad M S Alhuthali Tasawar Hayat Chinese Physics B, Volume: 25, Issue: 1, Article Number: 014701 Impact Factor: 1.223 Quartile: 3 Citations: 81 DOI: 10.1088/1674-1056/25/1/014701	2016
On squeezing flow of nanofluid in the presence of magnetic field effects Meraj Mustafa Hashmi Tasawar Hayat Taseer Muhammad A. Qayyum Ahmed Alsaedi Journal of Molecular Liquids, JOURNAL OF MOLECULAR LIQUIDS Volume: 213 Pages: 179-185, January 2016 Impact Factor: 3.648 Quartile: 1 Citations: 139 DOI: 10.1016/j.molliq.2015.11.003	2016
On Bodewadt flow and heat transfer of nanofluids over a stretching stationary disk Meraj Mustafa Hashmi Junaid Ahmad Khan Tasawar Hayat Ahmed Alsaedi Journal of Molecular Liquids, Volume 211, Pages 119-125 Impact Factor: 2.740 Quartile: 2 Citations: 115 DOI: 10.1016/j.molliq.2015.06.065	2015
Numerical study on three-dimensional flow of nanofluid past a convectively heated exponentially stretching sheet Meraj Mustafa Hashmi Junaid Ahmad Khan T. Hayat A. Alsaedi Canadian Journal of Physics, Volume 93, Issue 10, Pages 1131-1137	2015

Model for natural convective flow of visco-elastic nanofluid past an isothermal vertical plate Meraj Mustafa Ammar Mushtaq European Physical Journal Plus, Volume 130, Issue 9 Impact Factor: 1.521 Quartile: 2 Citations: 7 DOI: 10.1140/epjp/i2015-15178-1	2015
Numerical Study of Cattaneo-Christov Heat Flux Model for Viscoelastic Flow Due to an Exponentially Stretching Surface Meraj Mustafa Hashmi Junaid Ahmad Khan Tasawar Hayat Ahmed Alsaedi PLoS ONE, Volume: 10, Issue: 9, Article Number: e0137363 Impact Factor: 3.057 Quartile: 1 Citations: 142 DOI: 10.1371/journal.pone.0137363	2015
Peristaltic Flow of Couple-Stress Fluid with Heat and Mass Transfer: An Application in Biomedicine Meraj Mustafa Hashmi S. Hina Tasawar Hayat Ahmed Alsaedi Journal of Mechanics in Medicine and Biology, Volume: 15, Issue: 4, Article Number: 1550042 Impact Factor: 0.797 Quartile: 4 Citations: 20 DOI: 10.1142/S0219519415500426	2015
Model for flow of Casson nanofluid past a non-linearly stretching sheet considering magnetic field effects Meraj Mustafa Hashmi Junaid Ahmad Khan AIP Advances, Volume 5, Issue 7, Article Number: 077148 Impact Factor: 1.444 Quartile: 3 Citations: 184 DOI: 10.1063/1.4927449	2015
On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties Meraj Mustafa Hashmi S. Hina Tasawar Hayat Naif D. Alotaibi Applied Mathematics and Computation, Volume 263, Pages 378-391 Impact Factor: 1.345 Quartile: 1 Citations: 75 DOI: 10.1016/j.amc.2015.04.068	2015
Three-dimensional flow of nanofluid over a non-linearly stretching sheet: An application to solar energy Meraj Mustafa Hashmi Junaid Ahmad Khan Tasawar Hayat Ahmed Alsaedi International Journal of Heat and Mass Transfer, Volume 86, Pages 158-164 Impact Factor: 2.857 Quartile: 1 Citations: 157 DOI: 10.1016/j.ijheatmasstransfer.2015.02.078	2015
Model to study the non-linear radiation heat transfer in the stagnation-point flow of power-law fluid Meraj Mustafa Hashmi Ammar Mushtaq Tasawar Hayat Ahmed Alsaedi International Journal of Numerical Methods for Heat & Fluid Flow, Volume: 25, Issue: 5, Pages: 1107-1119 Impact Factor: 1.475 Quartile: 2 Citations: 19 DOI: http://dx.doi.org/10.1108/HFF-05-2014-0147	2015
Analytical and numerical solutions for axisymmetric flow of nanofluid due to non-linearly stretching sheet Meraj Mustafa Hashmi Junaid Ahmad Khan Tasawar Hayat Ahmed Alsaedi International Journal of Non-Linear Mechanics, Volume 71, Pages 22-29 Impact Factor: 1.920 Quartile: 2 Citations: 108 DOI: 10.1016/j.ijnonlinmec.2015.01.005	2015
Boundary-Layer Flow of Walters' B Fluid with Newtonian Heating Meraj Mustafa Hashmi Tasawar Hayat Anum Shafiq Ahmed Alsaedi Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences, Volume: 70, Issue: 5, Pages: 333-341 Impact Factor: 0.886 Quartile: 3 Citations: 34 DOI: 10.1515/zna-2014-0280	2015
Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid Meraj Mustafa Hashmi AIP Advances, Volume: 5, Issue: 4, Article Number: 047109 Impact Factor: 1.444 Quartile: 3 Citations: 260	2015

Three-dimensional flow of nanofluid induced by an exponentially stretching sheet: An application to solar energy Meraj Mustafa Hashmi Junaid Ahmad Khan T. Hayat M. Sheikholeslami A. Alsaedi	2015
PLoS ONE, Volume: 10 Issue: 3 Article Number: e0116603 Impact Factor: 3.057 Quartile: 1 Citations: 68 DOI: 10.1371/journal.pone.0116603	
Simulations for Maxwell fluid flow past a convectively heated exponentially stretching sheet with nanoparticles	2015
Meraj Mustafa Hashmi Junaid Ahmad Khan Tasawar Hayat Ahmed Alsaedi AIP Advances, Volume 5, Issue 3, Article Number: 037133 Impact Factor: 1.444 Quartile: 3 Citations: 66	
DOI: http://dx.doi.org/10.1063/1.4916364	
MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet Meraj Mustafa Hashmi Tasawar Hayat Sadia Asad Ahmed Alsaedi Computers and Fluids, Volume 108, Pages 179-185 Impact Factor: 1.891 Quartile: 2 Citations: 109	2015
DOI: 10.1016/j.compfluid.2014.11.016	
Radiation effects in three-dimensional flow over a bi-directional exponentially stretching sheet Meraj Mustafa Ammar Mushtaq Tasawar Hayat A. Alsaedi Journal of the Taiwan Institute of Chemical Engineers, Volume 47, Pages 43-49 Impact Factor: 2.848 Quartile: 1 Citations: 50 DOI: 10.1016/j.jtice.2014.10.011	2015
Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions Meraj Mustafa Hashmi Junaid Ahmad Khan Tasawar Hayat Ahmed Alsaedi AIP Advances, Volume 5, Issue 2, Article Number: 027106 Impact Factor: 1.444 Quartile: 3 Citations: 47 DOI: http://dx.doi.org/10.1063/1.4907927	2018
Boundary Layer Flow of Nanofluid Over a Nonlinearly Stretching Sheet With Convective Boundary Condition M. Mustafa Junaid A. Khan T. Hayat A. Alsaedi IEEE Tractions on Nanotechnology, Volume 14, Issue 1, Pages 159-168 Impact Factor: 1.702 Quartile: 2 Citations: 37 DOI: 10.1109/TNANO.2014.2374732	2015
On the exact solution for peristaltic flow of couple-stress fluid with wall properties Meraj Mustafa Hashmi S. Hina Tasawar Hayat Bulgarian Chemical Communications, Volume: 47, Issue: 1, Pages: 30-37	2018
Impact Factor: 0.229 Quartile: 4 DOI: http://www.bcc.bas.bg/BCC_Volumes/Volume_47_Number_1_2015/BCC-3426-47-1-Hina-30-37.pdf	
Numerical study of the non-linear radiation heat transfer problem for the flow of a second-grade fluid Meraj Mustafa Hashmi Ammar Mushtaq T. Hayat A. Alsaedi Bulgarian Chemical Communications, Volume 47, Issue 2, Pages 725-732 Impact Factor: 0.229 Quartile: 4	2015
Peristaltic motion of johnson-segalman fluid in a curved channel with slip conditions Meraj Mustafa Hashmi Sadia Hina Tasawer Hayat Sadia Hina Tasawer Hayat PLoS ONE, Volume 9, Issue 12 Impact Factor: 3.234 Quartile: 1 Citations: 16 DOI: 10.1371/journal.pone.0114168	2014
On the Numerical Solution of the Nonlinear Radiation Heat Transfer Problem in a Three-Dimensional Flow	2014
Ammar Mushtaq Meraj Mustafa Tasawar Hayat A. Alsaedi Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences, Volume 69, Issue 12, Pages 705-713 Impact Factor: 0.789 Quartile: 4 Citations: 18 DOI: 10.5560/ZNA.2014-0059	

2014

Boundary layer flow of Carreau fluid over a convectively heated stretching sheet

DOI: 10.1016/j.amc.2014.07.083	
Effects of Thermal Radiation on the Stagnation-Point Flow of Upper-Convected Maxwell Fluid over a Stretching Sheet Ammar Mushtaq Meraj Mustafa Tasawar Hayat A. Alsaedi Journal of Aerospace Engineering, Volume: 27 Issue: 4	2014
Impact Factor: 0.839 Quartile: 2 Citations: 49 DOI: 10.1061/(ASCE)AS.1943-5525.0000361	
Nonlinear Radiation Heat Transfer Effects in the Natural Convective Boundary Layer Flow of Nanofluid Past a Vertical Plate: A Numerical Study	2014
Ammar Mushtaq Meraj Mustafa Tasawar Hayat A. Alsaedi PLoS ONE , Volume 9, Issue 9	
Impact Factor: 3.234 Quartile: 1 Citations: 78 DOI: 10.1371/journal.pone.0103946	
On Three-Dimensional Flow and Heat Transfer over a Non-Linearly Stretching Sheet: Analytical and Numerical Solutions	2014
Meraj Mustafa Hashmi Junaid Ahmad Khan Tasawar Hayat Ahmed Alsaedi	
PLoS ONE, Volume 9, Issue 9, Article Number e107287	
Impact Factor: 3.234 Quartile: 1 Citations: 76 DOI: 10.1371/journal.pone.0107287	
Heat transfer analysis in the flow of Walters' B fluid with a convective boundary condition Meraj Mustafa Hashmi T. Hayat Sadia Asad Hamed H. Alsulami	2014
Chinese Physics B, Volume 23, Number 8, Article No.084701	
Impact Factor: 1.603 Quartile: 2 Citations: 50 DOI: 10.1088/1674-1056/23/8/084701	
Radiation Effects on the Flow of Powell-Eyring Fluid Past an Unsteady Inclined Stretching Sheet with	2014
Non-Uniform Heat Source/Sink	
Meraj Mustafa Hashmi Tasawar Hayat Sadia Asad Ahmed Alsaedi PLoS ONE , Volume 9, Issue 7, Article Number e103214	
Impact Factor: 3.234 Quartile: 1 Citations: 72	
DOI: 10.1371/journal.pone.0103214	
Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: A numerical study	2014
Ammar Mushtaq Meraj Mustafa Tasawar hayat Ahmed Alsaedi Journal of the Taiwan Institute of Chemical Engineers, Volume 45, Issue 4, Pages 1176-1183	
Impact Factor: 3.000 Quartile: 1 Citations: 139	
DOI: 10.1016/j.jtice.2013.11.008	
MHD Boundary Layer Flow of Second-Grade Nanofluid over a Stretching Sheet with Convective Boundary Conditions	2014
Meraj Mustafa Hashmi Nawaz, M. Alsaedi, A Hayat, T	
Journal of Aerospace Engineering, Volume: 27 Issue: 4 Article Number: 04014006	
Impact Factor: 0.839 Quartile: 2 Citations: 39	
DOI: 10.1061/(ASCE)AS.1943-5525.0000314	
Unsteady Flow and Heat Transfer of Jeffrey Fluid Over a Stretching Sheet	2014
Meraj Mustafa hashmi Tasawar Hayat Zahid Iqbal Ahmed Alsaedi	
Thermal Science, Volume: 18 Issue: 4 Pages: 1069-1078	
Impact Factor: 1.222 Quartile: 2 Citations: 44 DOI: 10.2298/TSCI110907092H	
On model for three-dimensional flow of nanofluid: An application to solar energy	2014
Junaid Ahmed Kan M Mustafa T Hayat M A Farooq A Alsaedi S. J. Liao	
Journal of Molecular Liquids, Volume 194, Pages 41-47	
Impact Factor: 2.515 Quartile: 2 Citations: 110 DOI: 10.1016/j.molliq.2013.12.045	

2014

Stagnation-Point Flow of Nanofluid Through Different Utilization of Thermal Radiation Effect

Meraj Mustafa Hashmi T. Hayat Sadia Asad A. Alsaedi

Applied Mathematics and Computation, Volume 246, Pages 12-22

Meraj Mustafa Hashmi M. Asif Farooq T Hayat A Alsaedi S J Liao T Hayat A Alsaedi S J Liao	
Journal of Computational and Theoretical Nanoscience, Volume 11, Issue 4, Pages 1107-1115	
Impact Factor: 1.343 Quartile: 3 Citations: 4	
DOI: 10.1166/jctn.2014.3469	
Peristaltic transport of pseudoplastic fluid in a curved channel with wall properties and slip conditions	2014
Meraj Mustafa Hashmi S. Hina T. Hayat A. Alsaedi	
International Journal of Biomathematics, Volume 7, Issue 2, Article number 1450015	
Impact Factor: 0.805 Quartile: 4 Citations: 22	
DOI: 10.1142/S1793524514500156	
Numerical investigation on mixed convective peristaltic flow of fourth grade fluid with Dufour and Soret	2014
effects	
Meraj Mustafa Hashmi Saeid Abbasbandy Sadia Hina Tasawar Hayat	
Journal of the Taiwan Institute of Chemical Engineers, Volume 45, Issue 2, Pages 308-316	
Impact Factor: 3.000 Quartile: 1 Citations: 87	
DOI: 10.1016/j.jtice.2013.07.010	
Peristaltic motion of nanofluid in a curved channel	2014
Meraj Mustafa Hashmi Sadia Hina Saeid Abbasbandy Tasawar Hayat A. Alsaedi	
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, Volume 136, Issue 5, Article number 052001	
Impact Factor: 1.45 Quartile: 2 Citations: 31	
DOI: 10.1115/1.4026168	
Analytic and numeric solutions for stagnation-point flow with melting, thermal-diffusion and diffusion-	2014
thermo effects	2011
M Awais T Hayat M Mustafa K Bhattacharyya M Asif Farooq	
International Journal of Numerical Methods for Heat & Fluid Flow, -	
Impact Factor: 1.399 Quartile: 2 Citations: 8	
DOI: 10.1108/HFF-10-2011-0220	
Stagnation-point flow of Jeffrey fluid with melting heat transfer and Soret and Dufour effects	2014
Meraj Mustafa Hashmi T. Hayat Z. Iqbal A. Alsaedi	
International Journal of Numerical Methods for Heat & Fluid Flow, Volume 24, Issue 2, Article Number 17105513, Pages 402-41	
Impact Factor: 1.399 Quartile: 2 Citations: 22	
DOI: 10.1108/HFF-02-2012-0023	
Influence of induced magnetic field on the peristaltic flow of nanofluid	2014
Meraj Mustafa Hashmi S. Hina T. Hayat B. Ahmad	
Meccanica, Volume 49, Issue 3, Pages 521-534	
Impact Factor: 1.949 Quartile: 1 Citations: 38	
DOI: 10.1007/s11012-013-9809-5	
Effect of slip on peristaltic flow of Powell-Eyring fluid in a symmetric channel	2014
Meraj Mustafa Hashmi Irfan Shah Tasawar Hayat Bashir Ahmad	
Applied Bionics and Biomechanics, Volume 11, Number 1-2, Pages 69-79	
Impact Factor: 0.255 Quartile: 4 Citations: 17	
DOI: 10.3233/ABB-140087	
Peristaltic motion of third grade fluid in curved channel	2014
Meraj Mustafa Hashmi S. Hina T. Hayat F. E. Alsaadi	2011
Applied Mathematics and Mechanics, Volume 35, Issue 1, Pages 73-84	
Impact Factor: 1.128 Quartile: 2 Citations: 27	
DOI: 10.1007/s10483-014-1773-7	
Exponentially Stretching Sheet in a Powell–Eyring Fluid: Numerical and Series Solutions	2013
Meraj Mustafa Hashmi Ammar Mushtaq Tasawar Hayat Mahmood Rahi Ahmed Alsaedi	
Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences, Volume 68, Issue 12, Pages 791-798	
Impact Factor: 0.908 Quartile: 3 Citations: 31	
DOI: 10.5560/ZNA.2013-0063	
UNSTEADY BOUNDARY LAYER FLOW OF NANOFLUID PAST AN IMPULSIVELY STRETCHING SHEET	2013
Meraj Mustafa Hashmi T. Hayat A. Alsaedi	

JOURNAL OF MECHANICS, Volume 29 Issue 3 Pages423-432

Impact Factor: 0.314 | Quartile: 4 | Citations: 54

Impact Factor: $2.315 \mid$ Quartile: $1 \mid$ Citations: 150

DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.04.060

Melting heat transfer in the stagnation-point flow of third grade fluid past a stretching sheet with viscous dissipation Meraj Mustafa Hashmi Tasawar HAYAT Zahid Iqbal Awatif A. HENDI Thormal Science, Volume 17, Inc.	2013
Thermal Science, Volume: 17 Issue: 3 Pages: 865-875 Impact Factor: 0.962 Quartile: 2 Citations: 23 DOI: 10.2298/TSCI110405119H	
Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions	2013
Meraj Mustafa Hashmi S. Obaidat T. Hayat International Journal of Numerical Methods for Heat & Fluid Flow, Volume:23, Issue:6, Pages 945-959	
Impact Factor: 0.919 Quartile: 3 Citations: 91	
DOI: 10.1108/HFF-09-2011-0179	
Numerical and series solutions for stagnation-point flow of nanofluid over an exponentially stretching sheet	2013
M Mustafa M Asif Faroog T Hayat A Alsaedi	
PLoS ONE, Volume 8, Issue 5, Article Number e61859	
Impact Factor: 3.534 Quartile: 1 Citations: 57	
DOI: 10.1371/journal.pone.0061859	
Slip Effects on the Peristaltic Motion of Nanofluid in a Channel With Wall Properties	2013
Meraj Mustafa Hashmi S. Hina T. Hayat A. Alsaedi S. Hina T. Hayat A. Alsaedi JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME , Volume: 135 Issue: 4	
Impact Factor: 2.055 Quartile: 1 Citations: 48	
DOI: 10.1115/1.4023038	
Stagnation-point flow of couple stress fluid with melting heat transfer	2013
Meraj Mustafa Hashmi T. Hayat Z. Iqbal A. Alsaedi	
Applied Mathematics and Mechanics, Volume 34, Issue 2, Pages 167-176	
Impact Factor: 0.802 Quartile: 2 Citations: 59 DOI: 10.1007/s10483-013-1661-9	
Peristaltic Flow of Pseudoplastic Fluid in a Curved Channel With Wall Properties	2013
Meraj Mustafa Hashmi Hina, S. Hayat, T. Alsaedi, A Hina, S. Hayat, T. Alsaedi, A JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, Volume: 80 Issue: 2 Article Number: 024501	
Impact Factor: 1.395 Quartile: 2 Citations: 34 DOI: 10.1115/1.4007433	
On the analytic solutions for squeezing flow of nanofluid between parallel disks	2012
Meraj Mustafa Hashmi Tasawar Hayat Ahmed Alsaedi	
Nonlinear Analysis: Modelling and Control, Volume 17 Issue 4 Pages 418-430	
Impact Factor: 0.861 Quartile: 2 Citations: 84	
DOI: 10.15388/NA.17.4.14048	
Momentum and heat transfer of an upper-convected Maxwell fluid over a moving surface with	2012
convective boundary conditions Meraj Mustafa Hashmi T. Hayat Z. Iqbal A. Alsaedi	
Nuclear Engineering and Design, Volume 252, Pages 242-247	
Impact Factor: 0.805 Quartile: 3 Citations: 43	
DOI: 10.1016/j.nucengdes.2012.07.012	
On heat and mass transfer in the unsteady squeezing flow between parallel plates Meraj Mustafa Hashmi T. Hayat S. Obaidat	2012
Meccanica, Volume 47, Issue 7, Pages 1581-1589	
Impact Factor: 1.747 Quartile: 1 Citations: 253	
DOI: 10.1007/s11012-012-9536-3	
Influence of wall properties on the peristaltic flow of a nanofluid: Analytic and numerical solutions Meraj Mustafa Hashmi S. Hina T. Hayat A. Alsaedi	2012
International Journal of Heat and Mass Transfer, Volume 55, Issues 17-18, Pages 4871-4877	

Influence of Heat Transfer in the Squeezing flow Between Parallel Disks T. Hayat Arshia Yousaf Meraj Mustafa Hashmi S. Asghar Chemical Engineering Communications, Volume 199, Issue 8, Pages 1044-1062 Impact Factor: 1.052 Quartile: 3 Citations: 34 DOI: 10.1080/00986445.2011.631203	2012
Axisymmetric Flow of a Nanofluid Over a Radially Stretching Sheet with Convective Boundary Conditions Meraj Mustafa Hashmi T. Hayat A. Alsaedi Current Nanoscience, Volume 8, Number 3, Pages 328-334 Impact Factor: 1.356 Quartile: 2 Citations: 28 DOI: 10.2174/157341312800620241	2012
Flow of a Second Grade Fluid over a Stretching Surface with Newtonian Heating T. Hayat Z. Iqbal Meraj Mustafa Hashmi Journal of Mechanics, Volume 28, No. 1, Pages 209-216 Impact Factor: 0.333 Quartile: 4 Citations: 44 DOI: https://doi.org/10.1017/jmech.2012.21	2012
Influence of Melting Heat Transfer in the Stagnation-Point Flow of a Jeffrey Fluid in the Presence of Viscous Dissipation Meraj Mustafa Hashmi T. Hayat Awatif A. Hendi Journal of Applied Mechanics, Volume 79, Issue 2, Article No. 024501 (5 pages) Impact Factor: 1.041 Quartile: 3 Citations: 32 DOI: https://doi.org/10.1115/1.4005560	2012
Stagnation-point flow and heat transfer of a Casson fluid towards a stretching sheet Meraj Mustafa Hashmi Tasawar Hayat Ioan Pop Awatif A Hendi Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences, Volume 67, Issue 1-2, Pages 70-76 Impact Factor: 1.363 Quartile: 2 Citations: 146 DOI: 10.5560/zna.2011-0057	2012
Melting heat transfer in the stagnation-point flow of an upper-convected Maxwell (UCM) fluid past a stretching sheet Tasawar Hayat Meraj Mustafa Hashmi S. A. Shehzad Saleem Obaidat International Journal for Numerical Methods in Fluids, Volume:68, Issue:2, Page:233-243 Impact Factor: 1.352 Quartile: 2 Citations: 66 DOI: 10.1002/fld.2503	2012
Flow and Heat Transfer of Jeffrey Fluid over a Continuously moving surface with a parallel free Stream T. Hayat Z. Iqbal Meraj Mustafa Hashmi S. Obaidat Journal of Heat Transfer, Volume 134, Issue 1, Article No. 011701 (7 pages) Impact Factor: 1.718 Quartile: 1 Citations: 16 DOI: https://doi.org/10.1115/1.4004744	2012
Stagnation-point flow of a nanofluid towards a stretching sheet Meraj Mustafa Hashmi Tasawar Hayat Ioan Pop Saleem Asghar Saleem Obaidat International Journal of Heat and Mass Transfer, Volume 54, Issue 25-26, Pages 5588-5594 Impact Factor: 2.407 Quartile: 1 Citations: 339 DOI: 10.1016/j.ijheatmasstransfer.2011.07.021	2011
Simultaneous effects of MHD and thermal radiation on the mixed convection stagnation-point flow of a power-law fluid Tasawar Hayat Meraj Mustafa Hashmi Saleem Obaidat Chinese Physics Letters, Volume 28, Issue 7, Article Number 074702 Impact Factor: 0.731 Quartile: 3 Citations: 21 DOI: 10.1088/0256-307X/28/7/074702	2011
Time-dependent three-dimensional flow and mass transfer of elastico-viscous fluid over unsteady stretching sheet Tasawar Hayat Meraj Mustafa Hashmi Awatif A Hendi Applied Mathematics and Mechanics, Volume:32, Issue:2, Page:167-178 Impact Factor: 0.558 Quartile: 3 Citations: 25 DOI: 10.1007/s10483-011-1403-7	2011

Editorial Activities

International Communications in Heat and Mass Transfer Reviewed Papers for Journals Impact Factor: 6.4	2025
Multiscale and Multidisciplinary Modeling, Experiments and Design Reviewed Papers for Journals Impact Factor: 1.9	2025
Journal of Applied Mathematics and Mechanics Reviewed Papers for Journals Impact Factor: 2.3	2025
Modern Physics Letters B Reviewed Papers for Journals Impact Factor: 1.8	2025
European Journal of Mechanics Reviewed Papers for Journals Impact Factor: 2.5	2025
Measurement Reviewed Papers for Journals Impact Factor: 1.9	2025
Multiscale and Multidisciplinary Modeling, Experiments and Design Reviewed Papers for Journals Impact Factor: 1.9	2025
International Communications in Heat and Mass Transfer Reviewed Papers for Journals Impact Factor: 6.4	2025
Results in Engineering Reviewed Papers for Journals Impact Factor: 6	2024
European Journal of Mechanics / B Fluids Reviewed Papers for Journals Impact Factor: 2.5	2024
Energy Optimization and Conservation Insights Reviewed Papers for Journals Impact Factor: 6	2024
International Communications in Heat and Mass Transfer Reviewed Papers for Journals Impact Factor: 6.4	2024
Chinese Journal of Physics Reviewed Papers for Journals Impact Factor: 5	2024
ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik Reviewed Papers for Journals Impact Factor: 2.3	2024
Chemical Physics Letters Reviewed Papers for Journals Impact Factor: 2.8	2024
Numerical Heat Transfer, Part B: Fundamentals Reviewed Papers for Journals Impact Factor: N/A	2024
Alexandria Engineering Journal Reviewed Papers for Journals Impact Factor: 6.8	2024

Chinese Journal of Physics Reviewed Papers for Journals Impact Factor: 5	2024
Applied mathematics and mechanics Reviewed Papers for Journals Impact Factor: 4.4	2024
Chinese Journal of Physics Reviewed Papers for Journals Impact Factor: 5.0	2024
Numerical Heat Transfer, Part A: Applications Reviewed Papers for Journals Impact Factor: 2.0	2024
Journal of Applied Mathematics and Mechanics Reviewed Papers for Journals Impact Factor: 2.3	2024
Journal of Computational Design and Engineering Reviewed Papers for Journals Impact Factor: 4.9	2023
Quaestiones Mathematicae Reviewed Papers for Journals Impact Factor: 0.7	2023
International Journal of Heat and Fluid Flow Reviewed Papers for Journals Impact Factor: 2.6	2023
Thermal Science and Engineering Progress Reviewed Papers for Journals Impact Factor: 4.8	2023
Journal of Molecular Liquids Reviewed Papers for Journals Impact Factor: 6.0	2023
ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik Reviewed Papers for Journals Impact Factor: 1.759	2023
Journal of Computational Design and Engineering Reviewed Papers for Journals Impact Factor: 4.9	2023
International Journal of Numerical Methods for Heat and Fluid Flow Reviewed Papers for Journals Impact Factor: 5.181	2023
Numerical Heat Transfer Part A-Applications Reviewed Papers for Journals Impact Factor: 2.569	2023
Zeitschrift Fur Angewandte Mathematik Und Mechanik Reviewed Papers for Journals Impact Factor: 1.759	2023
Waves in Random and Complex Media Reviewed Papers for Journals Impact Factor: 4.051	2023
Numerical Heat Transfer Reviewed Papers for Journals Impact Factor: 1.378	2023
International Communications in Heat and Mass Transfer Reviewed Papers for Journals Impact Factor: 6.782	2022

	2022
Reviewed Papers for Journals Impact Factor: 5.683	
Heat Transfer Reviewed Papers for Journals Impact Factor: N/A	2022
Numerical Heat Transfer Reviewed Papers for Journals	2022
Impact Factor: 2.569 Heat Transfer	2022
Reviewed Papers for Journals Impact Factor: N/A	2000
Reviewed Papers for Journals Impact Factor: 3.007	2022
Reviewed Papers for Journals Impact Factor: 0.226	2022
Reviewed Papers for Journals Impact Factor: 6.782	2022
Reviewed Papers for Journals Impact Factor: 5.683	2022
Reviewed Papers for Journals Impact Factor: 4.853	2022
Reviewed Papers for Journals Impact Factor: 1.606	2022
Reviewed Papers for Journals Impact Factor: 1.316	2022
Reviewed Papers for Journals Impact Factor: 3.696	2022
Reviewed Papers for Journals Impact Factor: 5.683	2022
Reviewed Papers for Journals Impact Factor: 5.683	2022
Reviewed Papers for Journals Impact Factor: 4.853	2022
Reviewed Papers for Journals Impact Factor: 5.683	2021
Reviewed Papers for Journals	2021
Impact Factor: 5.683	2021

Reviewed Papers for Journals

Impact Factor: 1.620	0001
Reviewed Papers for Journals Impact Factor: 1.762	2021
Reviewed Papers for Journals Impact Factor: 2.021	2021
Reviewed Papers for Journals Impact Factor: 1.968	2021
Reviewed Papers for Journals	2021
Impact Factor: 2.183 Reviewed Papers for Journals	2021
Impact Factor: 6.165	2020
Reviewed Papers for Journals Impact Factor: 3.696	2020
Reviewed Papers for Journals Impact Factor: 3.009	2020
Reviewed Papers for Journals Impact Factor: 3.009	2020
Reviewed Papers for Journals Impact Factor: 3.696	2020
Reviewed Papers for Journals	2020
Impact Factor: 3.97 Reviewed Papers for Journals	2020
Reviewed Papers for Journals	2020
Impact Factor: 1.407 Reviewed Papers for Journals	2020
Reviewed Papers for Journals	2020
Impact Factor: 2.33 Reviewed Papers for Journals	2020
Impact Factor: 3.26	2020
Reviewed Papers for Journals	2019

2019

Reviewed Papers for Journals
Impact Factor: 4.346

Reviewed Papers for Journals Impact Factor: 3.97

	2019
Reviewed Papers for Journals Impact Factor: 2.471	
Reviewed Papers for Journals Impact Factor: 3.424	2019
Reviewed Papers for Journals Impact Factor: 3.488	2019
Reviewed Papers for Journals Impact Factor: 2.151	2019
Reviewed Papers for Journals Impact Factor: 2.674	2018
Reviewed Papers for Journals	2018
Reviewed Papers for Journals Impact Factor: 1.984	2018
Reviewed Papers for Journals Impact Factor: 2.207	2018
Reviewed Papers for Journals Impact Factor: 3.57	2017
Reviewed Papers for Journals Impact Factor: 2.147	2017
impact actor. E. (4)	